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Abstract. Artificial neural networks (ANNs) were used in this study to determine factors that control the
polydispersity index (PDI) in an acetaminophen nanosuspension which was prepared using nanoprecipi-
tation in microfluidic devices. The PDI of prepared formulations was measured by dynamic light scatter-
ing. Afterwards, the ANNs were applied to model the data. Four independent variables, namely,
surfactant concentration, solvent temperature, and flow rate of solvent and antisolvent were considered
as input variables, and the PDI of acetaminophen nanosuspension was taken as the output variable. The
response surfaces, generated as 3D graphs after modeling, were used to survey the interactions happening
between the input variables and the output variable. Comparison of the response surfaces indicated that
the antisolvent flow rate and the solvent temperature have reverse effect on the PDI, whereas solvent flow
rate has direct relation with PDI. Also, the effect of the concentration of the surfactant on the PDI was
found to be indirect and less influential. Overall, it was found that minimum PDI may be obtained at high
values of antisolvent flow rate and solvent temperature, while the solvent flow rate should be kept to a
minimum.

KEY WORDS: acetaminophen; artificial neural networks; microfluidic devices; nanoprecipitation;
nanosuspension; polydispersity index.

INTRODUCTION

Nanosuspensions, compared with conventional drug de-
livery systems, have shown a variety of advantages, including
increased dissolution velocity and saturation solubility, re-
duced administered dose (1), improved biological perfor-
mance, capability of being scaled up, and possible
enhancements in stability and versatility (2). They have also
shown a great ability to work with poorly water-soluble drugs
(1). Such preparations are composed of drug particles with
colloidal dispersions below 1 μm in size (3,4) which are usually
prepared by two common approaches: precipitation of drug
molecules in a solution using an antisolvent and creation of
smaller particles from larger ones by high shear forces (i.e.,
milling) (5).

Microfluidic instruments are commonly known as mini-
aturized versions of macroscale devices showing two attractive
properties—increasing the ratio of surface area to volume and
presence of laminar flow (6). In these instruments, liquids flow
in channels with internal diameters typically <1 mm. Liquids

flowing in microfluidic channels are linear, forming a diffusion
interface in the central part of the channel. When a solution of
drug in a solvent gets in touch with an antisolvent, the drug
molecules in the solvent diffuse across the interface (i.e., dif-
fusion layer) and start to nucleate and grow in size (7).

The increased ratio of surface area to volume could be
beneficial for processes such as enzymatic reactions or extrac-
tion of active components. Additionally, such systems are
useful in dealing with micro- and nanoliter volumes of solu-
tions with their interesting performance. Moreover, microflui-
dic reactors compared with other methods for preparation of
nanosuspensions offer a low-cost technique without producing
considerable residues (8), while a monodispersed product is
commonly obtained (9–11). In such instruments, to prevent
uncontrolled growth and precipitation of created drug nuclei
in the solution, the growth/precipitation rate can be controlled
using surfactants or polymers (12).

Artificial neural networks (ANNs) are nowadays being
introduced as methodologies that are able to deal with non-
linear and complex relations, particularly when the nature of
relations between the experimental data is unknown (13).
ANNs can learn and recognize relations between independent
variables (i.e., input data set) and corresponding dependent
variable(s) (i.e., output parameter(s)) (14). In recent years,
ANNs have been successfully used in various areas of appli-
cations such as image processing, medicine, pharmaceutics
(14,15), and nanotechnology (16), where statistical methods
may not be efficient due to complex relations commonly ob-
served between the data.
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Considering the literature, a few works so far have
reported the factors affecting the particle size of nano-
suspensions prepared by microfluidic reactors (17–19).
However, no comprehensive work so far has reported
the possible factors influencing the polydispersity of the
nanoparticles prepared through this approach. Polydisper-
sity having been mentioned as an important factor which
can substantially affect the quality of such preparations
(20). Additionally, the existence of particles with low size
distribution in nanosuspensions slows the effect of Ost-
wald ripening, thus making the preparation more stable
(21). Our previous work detailed the physical stability of a
nanosuspension of acetaminophen prepared by microflui-
dic reactors. In brief, results of this experiment showed
that increasing the ratio of antisolvent flow rate to solvent
flow rate results in higher physical stability of acetamino-
phen nanosuspension. Also, increasing the temperature of
the solvent and the surfactant content of the preparation
causes an increase in the stability of the nanosuspension.
To recognize the possible mechanisms, a preliminary study
with limited number of experiments was performed. The
effects of solvent/antisolvent flow rate as well as temper-
ature were found to influence the PDI of the nanosuspen-
sion which could be an explanation for changes in
physical stability. Nevertheless, a more detailed assessment
appeared to be necessary to confirm the effect of the
input parameters on the PDI (22). In the current work,
we applied ANNs to study relations between parameters
affecting the PDI on the nanoprecipitation process of the
acetaminophen nanosuspension prepared with microfluidic
devices.

MATERIALS AND METHODS

Materials

Acetaminophen powder (pharmaceutical grade) was a
gift from Mehrdarou Pharmaceutical, Iran. Ethanol 96% and
Tween 80 (polysorbate 80) were of analytical grade and pur-
chased from Sigma-Aldrich, Germany.

Nanoprecipitation Process in the Microfluidic Instrument

The nanoprecipitation process was attained by
streams of supersaturated ethanolic solutions of acetamin-
ophen as solvent and distilled water as antisolvent,
pumped through the microfluidic instrument. The details
of the instrument have been given previously (22). Stream
rates of the solvent (0.5–1 ml/min, 30–80°C) and antisol-
vent (0.5–2.5 ml/min) were controlled by hydrodynamic
micropumps. Solvent and antisolvent solutions were
injected in the microfluidic instrument at controlled tem-
peratures. The antisolvent system was maintained at a
controlled lab temperature (i.e., 24±2°C) and contained
different concentrations of Tween 80 (10–270 mg/ml).
The obtained samples were maintained at the controlled
lab temperature, and their PDI measured freshly using
DLS. Subsequently, the obtained PDI data were used to
study the effect of four input parameters on the PDI of
the nanosuspension according to the model obtained from
ANNs modeling.

ANNs Studies

In the present study, a commercially available ANNs
software (INForm v4.02, Intelligensys, UK) was employed
to model relationships between input and output parame-
ters. The response surfaces from the model were illustrat-
ed as 3D graphs. In fact, as described previously (23,24),
response surfaces were produced to show the changes in
the output as a function of variations of two variables
while the other two variables are fixed at predetermined
values.

Experimentally, 38 samples were prepared under different
conditions in order to train, test, and validate the ANNs soft-
ware. As explained above, the process of making nanoparticles
involved four input variables which were randomly designed
and prepared for each test: solvent flow rate (in milliliters per
minute), antisolvent flow rate (in milliliters per minute), solvent
temperature (in degrees Celsius), and Tween 80 concentration
(in milligrams per milliliter). Furthermore, the obtained PDI
was set as the output variable. From the samples prepared

Table I. The Training Parameters Used with INForm v4.02

Network structure No. of hidden layers 1
No. of nodes in hidden layer 4

Backpropagation type Incremental
Backpropagation parameters Momentum factor 0.8

Learning rate 0.7
Targets Maximum iterations 1,000

MS error 0.0001
Random seed 10,000

Smart stop Minimum iterations 20
Test error weighting 0.1
Iteration overshoot 200
Auto weight On
Smart stop enabled On

Transfer function Output Symmetric sigmoid
Hidden layer Asymmetric sigmoid

MS mean squared
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experimentally, 27 were utilized as “training data” to train the
network in order to establish the input–output relationships. In
addition, three data sets were utilized as “test data” (i.e., 10% of
the training data as offered by the software) to stop overtraining
during the learning process. The remaining sets were used as
“unseen data” or “validation data” to evaluate the model pre-
dicted by the software. Table I includes the training parameters
utilized during ANN modeling.

The developed model was then qualified using the deter-
mination coefficient (R2) for unseen data (see Table II).

R2 ¼ 1�
Pn

i¼1 yi � byið Þ2
Pn

i¼1 yi � yið Þ2 ð1Þ

where ŷ and y represent the value predicted and themean of the
variable. Avalue closer to 1 shows a better predictability for the
model (23,24).
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Fig. 1. 3D plots of the nanosuspensions' PDI predicted by the ANNsmodel fixed at low, mid-range, and high values of Tween 80 and solvent temperature

Table II. The Unseen Data Sets Utilized in ANNs Modeling

Tween 80 concentration
(mg/ml)

Solvent flow rate
(ml/min)

Antisolvent flow rate
(ml/min)

Solvent temperature
(°C) Observed PDI Predicted PDI

43.2 0.6 1.1 60 0.37 0.38
194.4 0.5 1.0 60 0.30 0.37
54.0 0.6 1.0 30 0.42 0.44
86.4 1.0 1.3 50 0.41 0.43
86.4 0.8 1.0 50 0.40 0.44
270.0 0.5 1.0 70 0.29 0.31
259.2 0.5 2.5 60 0.16 0.16

PDI polydispersity index
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Measurement of the Nanosuspensions' PDI

PDI of the obtained formulations was measured using a
Zetasizer (Malvern, UK), equipped with the Malvern PCS
software (version 1.27). The temperature of the samples was
set to 24°C, and measurement was done for all samples after
preparation without any dilution.

RESULTS

After modeling using the ANNs software, the obtained
model represented an R2 value of 0.81 for validation data
indicating an acceptable prediction ability of the model. Then,
this model was employed to study the effect of input variables on
the PDI in the nanoprecipitation process. The first option to
study the obtained ANNs model can be the sensitivity analysis
approach. Here, we used a systematic method for a
“semiquantitative” investigation of relationships between the

input–output variables (23,24). Briefly, in this approach,
response surfaces are used to study the effect of two input
variables on the output variable (i.e., PDI), while the other
input variables are fixed at values of low/mid-range/high (17,25).

Reviewing the graphs obtained from the software (i.e.,
Figs. 1, 2, 3,4, 5, and 6) determines that the values obtained for
the PDI are in the range of 0.15–0.48. This shows the potential
of microfluidic reactors in preparing monodispersed disper-
sions, as has been reported previously (9,11), having men-
tioned that the maximum obtained value for the PDI (i.e.,
0.48) is still not very heterodispersed.

Following the approach expressed above, at first, the
effects of solvent and antisolvent flow rate on the PDI of the
acetaminophen nanosuspension were evaluated, while the two
other input variables, namely, Tween 80 concentration and
temperature of solvent, were fixed at 64.8, 172.8, and
270.0 mg/ml and 38°C, 55°C, 72°C, respectively (i.e., low,
mid-range, and high values). The obtained 3D graphs are
illustrated in Fig. 1. The details in Fig. 1 show that increasing
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Fig. 2. 3D plots of the nanosuspensions' PDI predicted by the ANNs model fixed at low, mid-range, and high values of Tween 80 and
solvent flow rate
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the antisolvent flow rate results in a substantial reduction in
the PDI of the acetaminophen nanosuspension. It also indi-
cates that by increasing the solvent flow rate, the PDI
increases slowly.

In Fig. 2, to study the effect of solvent temperature and
antisolvent flow rate on the PDI, we fixed Tween 80 concen-
tration and solvent flow rate at 64.8, 172.8, and 270.0 mg/ml,
and 0.48, 0.75, and 0.92 ml/min for low, mid-range, and high
values, respectively. Here, the effect of solvent temperature on
PDI for each set of fixed data clearly shows that increasing the
solvent temperature causes a considerable decrease in PDI of
nanosuspensions. Also, increasing the antisolvent flow rate
causes a decrease in PDI, as expressed above.

In Fig. 3, the effect of Tween 80 concentration and solvent
flow rate on the PDI of nanosuspensions is shown, in which the
temperature of the solvent and antisolvent flow rate at low, mid-
range, and high values have been fixed. As the details in this
figure show, solvent flow rate has a direct and nearly linear
relation with PDI, as expressed above. Furthermore, higher

values of the antisolvent flow rate and solvent temperature
cause smaller PDI. From Fig. 3, it is also clear that increase in
the Tween 80 concentration makes PDI slightly smaller with
more pronounced effect at high antisolvent flow rates.

With regard to the details in Figs. 4, 5, and 6 that show the
effects of antisolvent flow rate and Tween 80 concentration,
temperature of solvent and Tween 80 concentration, and sol-
vent flow rate and temperature of solvent on the PDI, respec-
tively, and using the aforementioned results, the following
rules can be concluded:

1. In general, increase in antisolvent flow rate or decrease
in solvent flow rate causes a reduction of the PDI in
nanosuspension.

2. By increasing the temperature of the solvent, the PDI
decreases considerably.

3. The concentration of the surfactant does not seem to
be considerably effective on the PDI except when the
antisolvent flow rate is high.
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Fig. 3. 3D plots of the nanosuspensions' PDI predicted by the ANNs model fixed at low, mid-range, and high values of the antisolvent flow rate
and solvent temperature
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DISCUSSION

The linear patterns, which are commonly observed in
microfluidic channels, direct a controlled diffusion of the drug
molecules across the interface. This usually ends up in limited
variations in the dispersity of samples, as noted above. The
formed drug nuclei in the interface, which are a result of
mixing solvent and antisolvent (i.e., supersaturation), serve
as nucleation sites and start to grow in size. Whereas, control-
ling the growth of the particles and preventing the drug sed-
imentation is usually performed by addition of surfactants
and/or polymers (6) (see Fig. 7).

Our previous work on the factors affecting the physical
stability of a nanosuspension of acetaminophen, prepared in
microfluidic instrument, showed that antisolvent flow rate and
temperature of solvent had a direct relation with physical
stability, while the solvent flow rate showed reverse effect on
the stability (22). In that study, it was suggested that the

changes in the stability may be related to changes in polydis-
persity of the preparation, as examined in a preliminary study.
Findings in the present work are in correlation with our pre-
vious hypothesis.

From the results expressed above, it can be concluded
that the increasing temperature of the solvent results in de-
creasing particle size dispersity in the final product (i.e., more
uniform nanosuspension). It could be due to the fact that an
increase in temperature of the solvent leads to more rapid
diffusion of the solute from the solvent stream into the anti-
solvent stream. As a result, before leaving the instrument,
more drug molecules get in touch with the antisolvent stream
and form more drug nuclei in the diffusion layer (i.e., forma-
tion of more nucleation sites). This phenomenon ends up in
the formation of particles with smaller sizes and less
polydispersity.

With regard to the effect of solvent/antisolvent flow rates,
it has been determined that increasing the antisolvent flow

Solvent flow rate 

High (0.92  ml/min) Mid-range (0.75  ml/min) Low (0.48  ml/min) 
H

ig
h 

(7
2 

 o C
) 

M
id

-r
an

ge
 (

55
  o C

) 

So
lv

en
t t

em
pe

ra
tu

re
 

L
ow

 (
38

  o C
) 

Fig. 4. 3D plots of the nanosuspensions' PDI predicted by the ANNs model fixed at low, mid-range, and high values of the solvent flow rate and
solvent temperature
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rate makes the PDI smaller which is in good agreement with
the former studies by Chen et al. and Wang et al. (26,27). In
fact, with increasing antisolvent flow rate, fewer drug mole-
cules diffuse to the flow of antisolvent per unit volume of
antisolvent. Consequently, presence of the solute decreases
around growing drug particles (17,19). Therefore, a nanosus-
pension with less PDI value will be formed. A second reason
for this phenomenon could be the formation of more nucle-
ation sites per unit volume of antisolvent. This causes the
precipitation of less drug molecules per nucleation site, thus
causing a more uniform distribution for the particle size (i.e.,
less PDI). Similarly, current findings show that a higher sol-
vent flow rate causes an increase in PDI. It is arguable that
with increasing solvent flow, diffusion of drug molecules per
unit volume of antisolvent to antisolvent flow will increase.
This results in a product with more polydispersity, as
explained above.

The details also show that the Tween 80 concentration
has a small impact on particle size distribution which is in
agreement with a previous report (28). Furthermore, the

model showed that increasing the antisolvent flow rate pro-
motes the effect of surfactant concentration. This is most
probably due to the fact that in this experiment, the surfactant
was dissolved in water (i.e., antisolvent). Upon increasing the
antisolvent flow rate, more surfactant molecules enter the
microfluidic device. This causes a further increase in the con-
tent of Tween 80 in the final preparation and accordingly
makes the preparation more monodispersed.

Overall, this study suggests that antisolvent flow rate and
temperature of the solvent are possibly the dominant factors
influencing polydispersity of the nanosuspension of acetamin-
ophen. To obtain the minimum PDI—as the optimized formu-
lation—the flow rate of the antisolvent as well as temperature
of the solvent need to be kept high while the solvent flow rate
should be minimum.

CONCLUSION

In this research, a quality ANN model was obtained that
showed the impact of solvent and antisolvent flow rate, solvent
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Fig. 5. 3D plots of the nanosuspensions' PDI predicted by the ANNs model fixed at low, mid-range, and high values of the solvent and antisolvent
flow rate

1299ANNs for Optimizing PDI in Nanoprecipitation of Acetaminophen



temperature, and concentration of Tween 80 on the polydisper-
sity in a nanosuspension of acetaminophen prepared in a micro-
fluidic instrument. The response surfaces obtained from the
model illustrated that all the four variables have some effects
on the PDI. In general, increasing the antisolvent flow rate and

solvent temperature resulted in decreasing PDI, while the sol-
vent flow rate had a direct relation with polydispersity. It was
also found that normally, the concentration of the surfactant had
a reverse but less important effect on the PDI.
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